Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Crit Care ; 28(1): 88, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504349

RESUMO

BACKGROUND: Sepsis is a life-threatening condition arising from an aberrant host response to infection. Recent single-cell RNA sequencing investigations identified an immature bone-marrow-derived CD14+ monocyte phenotype with immune suppressive properties termed "monocyte state 1" (MS1) in patients with sepsis. Our objective was to determine the association of MS1 cell profiles with disease presentation, outcomes, and host response characteristics. METHODS: We used the transcriptome deconvolution method (CIBERSORTx) to estimate the percentage of MS1 cells from blood RNA profiles of patients with sepsis admitted to the intensive care unit (ICU). We compared these profiles to ICU patients without infection and to healthy controls. Host response dysregulation was further studied by gene co-expression network and gene set enrichment analyses of blood leukocytes, and measurement of 15 plasma biomarkers indicative of pathways implicated in sepsis pathogenesis. RESULTS: Sepsis patients (n = 332) were divided into three equally-sized groups based on their MS1 cell levels (low, intermediate, and high). MS1 groups did not differ in demographics or comorbidities. The intermediate and high MS1 groups presented with higher disease severity and more often had shock. MS1 cell abundance did not differ between survivors and non-survivors, or between patients who did or did not acquire a secondary infection. Higher MS1 cell percentages were associated with downregulation of lymphocyte-related and interferon response genes in blood leukocytes, with concurrent upregulation of inflammatory response pathways, including tumor necrosis factor signaling via nuclear factor-κB. Previously described sepsis host response transcriptomic subtypes showed different MS1 cell abundances, and MS1 cell percentages positively correlated with the "quantitative sepsis response signature" and "molecular degree of perturbation" scores. Plasma biomarker levels, indicative of inflammation, endothelial cell activation, and coagulation activation, were largely similar between MS1 groups. In ICU patients without infection (n = 215), MS1 cell percentages and their relation with disease severity, shock, and host response dysregulation were highly similar to those in sepsis patients. CONCLUSIONS: High MS1 cell percentages are associated with increased disease severity and shock in critically ill patients with sepsis or a non-infectious condition. High MS1 cell abundance likely indicates broad immune dysregulation, entailing not only immunosuppression but also anomalies reflecting exaggerated inflammatory responses.


Assuntos
Monócitos , Sepse , Humanos , Estado Terminal , Sepse/complicações , Biomarcadores , Leucócitos , Unidades de Terapia Intensiva
2.
Trop Med Infect Dis ; 9(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38251219

RESUMO

BACKGROUND: As infective endocarditis has particular characteristics compared to other infectious diseases, it is not clear if sepsis scores are reported with good accuracy in these patients. The aim of this study is to evaluate the accuracy of the qSOFA and SOFA scores to predict mortality in patients with infective endocarditis. METHODS: Between January 2010 and June 2019, 867 patients with suspected left-sided endocarditis were evaluated; 517 were included with left-sided infective endocarditis defined as "possible" or "definite" endocarditis, according to the Modified Duke Criteria. ROC curves were constructed to assess the accuracy of qSOFA and SOFA sepsis scores for the prediction of in-hospital mortality. RESULTS: The median age was 57 years, 65% were male, 435 (84%) had pre-existing heart valve disease, and the overall mortality was 28%. The most frequent etiologies were Streptococcus spp. (36%), Enterococcus spp. (10%), and Staphylococcus aureus (9%). The sepsis scores from the ROC curves used to predict in-hospital mortality were qSOFA 0.601 (CI95% 0.522-0.681) and SOFA score 0.679 (CI95% 0.602-0.756). A sub-group analysis in patients with and without pre-existing valve disease for SOFA ≥ 2 showed ROC curves of 0.627 (CI95% 0.563-0.690) and 0.775 (CI95% 0.594-0.956), respectively. CONCLUSIONS: qSOFA and SOFA scores were associated with increased in-hospital mortality in patients with infective endocarditis. However, as accuracy was relatively lower compared to other sites of bacterial infections, we believe that this score may have lower accuracy when predicting the prognosis of patients with IE, because, in this disease, the patient's death may be more frequently linked to valvular and cardiac dysfunction, as well as embolic events, and less frequently directly associated with sepsis.

3.
Viruses ; 15(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38005844

RESUMO

COVID-19's severity has been associated with a possible imbalance in the cross-regulation of cytokines and vascular mediators. Since the beginning of the pandemic, kidney transplant recipients (KTRs) have been identified as patients of high vulnerability to more severe diseases. Thus, aiming to describe the patterns of cytokines and vascular mediators and to trace patients' differences according to their KTR status, this prospective study enrolled 67 COVID-19 patients (20 KTRs) and 29 non-COVID-19 controls before vaccination. A panel comprising 17 circulating cytokines and vascular mediators was run on samples collected at different time points. The cytokine and mediator patterns were investigated via principal component analysis (PCA) and correlation-based network (CBN). In both groups, compared to their respective controls, COVID-19 was associated with higher levels of cytokines and vascular mediators. Differentiating between the KTRs and non-KTRs, the number of correlations was much higher in the non-KTRs (44 vs. 14), and the node analysis showed the highest interactions of NGAL and sVCAM-1 in the non-KTRs and KTRs (9 vs. 4), respectively. In the PCA, while the non-KTRs with COVID-19 were differentiated from their controls in their IL-10, IFN-α, and TNF-α, this pattern was marked in the NGAL, sVCAM-1, and IL-8 of the KTRs.


Assuntos
COVID-19 , Transplante de Rim , Humanos , Citocinas , Estudos Prospectivos , Lipocalina-2 , Transplantados
4.
iScience ; 26(10): 107824, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736053

RESUMO

The clinical presentation of COVID-19 is highly variable, and understanding the underlying biological processes is crucial. This study utilized a proteomic analysis to investigate dysregulated processes in the peripheral blood mononuclear cells of patients with COVID-19 compared to healthy volunteers. Samples were collected at different stages of the disease, including hospital admission, after 7 days of hospitalization, and 30 days after discharge. Metabolic pathway alterations and increased abundance of neutrophil-related proteins were observed in patients. Patients progressing to critical illness had significantly low-abundance proteins in the pentose phosphate and glycolysis pathways compared with those presenting clinical recovery. Important biological processes, such as fatty acid concentration and glucose metabolism disorder, remained altered even after 30 days of hospital discharge. Temporal proteomic changes revealed distinct pathways in critically ill and non-critically ill patients. Our study emphasizes the significance of longitudinal cellular proteomic studies in identifying disease progression-related pathways and persistent protein changes post-hospitalization.

5.
Shock ; 59(6): 882-891, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071074

RESUMO

ABSTRACT: Sepsis is one of the leading causes of morbidity and mortality worldwide. Monocytes seem to undergo functional reprogramming during sepsis, resulting in dysregulated host immune response. To clarify this dysregulation mechanism, we investigated three histone modifications found in promoters of genes involved in innate immune response, and associated these findings with gene transcription in septic patients. These results were compared with public transcriptome data of the target genes and epigenetic enzymes that modulate the histone modifications. We used peripheral blood mononuclear cell from surviving and nonsurviving septic patients, and healthy volunteers to evaluate the expression of genes involved in innate immune response and the enrichment of H3K9ac, H3K4me3, and H3K27me3 in their promoters, by RT-qPCR and ChIP, respectively. Finally, we used transcriptome data sets to validate our findings. We found alterations in the chromatin enrichment of different genes, with an increase in H3K9ac in the anti-inflammatory cytokine IL-10 and the antimicrobial gene FPR1 , as well as an increase in H3K27me3 in the IL-10 and HLA-DR promoter in nonsurvivors septic patients when compared with survivors. These alterations were partially associated with the gene expression profile. In addition, we found moderate to strong correlation between gene transcription and the enzymes that modulate these histone modifications in the transcriptome data sets. Our study, one of the pioneering by evaluating septic patients' samples, suggests that epigenetic enzymes modulate the prevalent histone marks in promoters of genes involved in the immune-inflammatory response, altering the transcription of these specific genes during sepsis. Furthermore, nonsurviving sepsis patients have a more pronounced epigenetic dysregulation compared with survivors, suggesting a more dysfunctional response.


Assuntos
Histonas , Sepse , Humanos , Histonas/metabolismo , Interleucina-10/metabolismo , Leucócitos Mononucleares/metabolismo , Epigênese Genética , Imunidade Inata , Sepse/genética
6.
Crit Care Explor ; 5(2): e0860, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751516

RESUMO

To ascertain the association between cholesterol and triglyceride levels on ICU admission and mortality in patients with sepsis. DATA SOURCES: Systematic review and meta-analysis of published studies on PubMed and Embase. STUDY SELECTION: All observational studies reporting ICU admission cholesterol and triglyceride levels in critically ill patients with sepsis were included. Authors were contacted for further data. DATA EXTRACTION: Eighteen observational studies were identified, including 1,283 patients with a crude overall mortality of 33.3%. Data were assessed using Revman (Version 5.1, Cochrane Collaboration, Oxford, United Kingdom) and presented as mean difference (MD) with 95% CIs, p values, and I 2 values. DATA SYNTHESIS: Admission levels of total cholesterol (17 studies, 1,204 patients; MD = 0.52 mmol/L [0.27-0.77 mmol/L]; p < 0.001; I 2 = 91%), high-density lipoprotein (HDL)-cholesterol (14 studies, 991 patients; MD = 0.08 mmol/L [0.01-0.15 mmol/L]; p = 0.02; I 2 = 61%), and low-density lipoprotein (LDL)-cholesterol (15 studies, 1,017 patients; MD = 0.18 mmol/L [0.04-0.32 mmol/L]; p = 0.01; I 2 = 71%) were significantly lower in eventual nonsurvivors compared with survivors. No association was seen between admission triglyceride levels and mortality (15 studies, 1,070 patients; MD = 0.00 mmol/L [-0.16 to 0.15 mmol/L]; p = -0.95; I 2 = 79%). CONCLUSIONS: Mortality was associated with lower levels of total cholesterol, HDL-cholesterol, and LDL-cholesterol, but not triglyceride levels, in patients admitted to ICU with sepsis. The impact of cholesterol replacement on patient outcomes in sepsis, particularly in at-risk groups, merits investigation.

7.
Gerontology ; 69(6): 660-670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36657402

RESUMO

INTRODUCTION: Immunosenescence is associated with changes in lymphocyte function, thymus atrophy, and a chronic inflammatory process referred to as "inflammaging," which may in part be linked to eating disorders. OBJECTIVE: The aim of the study was to determine the prevalence rate of immunological alterations, including immune risk profile (IRP), and their association with body composition in the oldest old individuals. METHODS: A cross-sectional study of 201 older adults aged 80 years and over, able to walk unaided, with no cognitive or immunological impairment, and with no serious diseases was conducted. Blood samples were collected between 2012 and 2014 during the morning period, and the following tests were conducted: urea, creatinine, hemogram, fasting glucose, glycated hemoglobin, transferrin, albumin, 25-OH vitamin D, and high-sensitivity CRP. Plasma cytokines were measured and mononuclear cell counts were performed by flow cytometry. Anthropometric measurements and densitometry using dual-energy X-ray absorptiometry (DXA) were performed to assess body composition. RESULTS: Mean age was 84.4 ± 3.7 years, and the numbers of T cells were CD4, 784.0 cell/µL; CD8, 371.0 cell/µL; and CD4/CD8, 2.4. The rate of CD4/CD8 <1 (IRP) was 9.4%, CD4/CD8 1-5 was 85.6%, while CD4/CD8 >5 was only 5.5%. CRP, tumor necrosis factor, IL1, IL4, IL6, and IL10 variables showed a high coefficient of variation but low mean values of 1.1 ± 3.1 mg/L for CRP (reference range <3 mg/L) and 3.9 ± 5.0 pg/mL for IL6 (reference range <7.0 pg/mL). The same pattern was found for all other inflammatory variables assessed, characterizing a population whose values indicated low level of inflammation, considering age. Lean mass, as measured by DXA, was higher in men than in women, while the inverse was found for fat % (p < 0.001). A positive association between CRP values and DXA fat % (p value: 0.007, r: 0.49) and a negative association between CRP values and DXA lean mass (p value: 0.046, r:-0.37) was observed. CONCLUSION: In the independent oldest old, IRP rate proved low and high-sensitivity CRP was shown to be associated with body composition.


Assuntos
Composição Corporal , Interleucina-6 , Masculino , Idoso de 80 Anos ou mais , Humanos , Feminino , Idoso , Estudos Transversais , Absorciometria de Fóton , Longevidade
8.
Front Immunol ; 13: 1051514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466921

RESUMO

Metabolic adaptations shape immune cell function. In the acute response, a metabolic switch towards glycolysis is necessary for mounting a proinflammatory response. During the clinical course of sepsis, both suppression and activation of immune responses take place simultaneously. Leukocytes from septic patients present inhibition of cytokine production while other functions such as phagocytosis and production of reactive oxygen species (ROS) are preserved, similarly to the in vitro endotoxin tolerance model, where a first stimulation with lipopolysaccharide (LPS) affects the response to a second stimulus. Here, we sought to investigate how cellular metabolism is related to the modulation of immune responses in sepsis and endotoxin tolerance. Proteomic analysis in peripheral blood mononuclear cells (PBMCs) from septic patients obtained at intensive care unit admission showed an upregulation of proteins related to glycolysis, the pentose phosphate pathway (PPP), production of ROS and nitric oxide, and downregulation of proteins in the tricarboxylic acid cycle and oxidative phosphorylation compared to healthy volunteers. Using the endotoxin-tolerance model in PBMCs from healthy subjects, we observed increased lactate production in control cells upon LPS stimulation, while endotoxin-tolerant cells presented inhibited tumor necrosis factor-α and lactate production along with preserved phagocytic capacity. Inhibition of glycolysis and PPP led to impairment of phagocytosis and cytokine production both in control and in endotoxin-tolerant cells. These data indicate that glucose metabolism supports leukocyte functions even in a condition of endotoxin tolerance.


Assuntos
Endotoxinas , Sepse , Humanos , Proteoma , Leucócitos Mononucleares , Lipopolissacarídeos/farmacologia , Proteômica , Espécies Reativas de Oxigênio , Leucócitos , Via de Pentose Fosfato , Lactatos , Glucose , Citocinas
9.
Cells ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36497049

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1), as a potential target for the experimental therapy of acute lung injury (ALI), was identified over 20 years ago. However, clinical translation of this concept was not possible due to the lack of clinically useful PARP inhibitors. With the clinical introduction of several novel, ultrapotent PARP inhibitors, the concept of PARP inhibitor repurposing has re-emerged. Here, we evaluated the effect of 5 clinical-stage PARP inhibitors in oxidatively stressed cultured human epithelial cells and monocytes in vitro and demonstrated that all inhibitors (1-30 µM) provide a comparable degree of cytoprotection. Subsequent in vivo studies using a murine model of ALI compared the efficacy of olaparib and rucaparib. Both inhibitors (1-10 mg/kg) provided beneficial effects against lung extravasation and pro-inflammatory mediator production-both in pre- and post-treatment paradigms. The underlying mechanisms include protection against cell dysfunction/necrosis, inhibition of NF-kB and caspase 3 activation, suppression of the NLRP3 inflammasome, and the modulation of pro-inflammatory mediators. Importantly, the efficacy of PARP inhibitors was demonstrated without any potentiation of DNA damage, at least as assessed by the TUNEL method. These results support the concept that clinically approved PARP inhibitors may be repurposable for the experimental therapy of ALI.


Assuntos
Lesão Pulmonar Aguda , Inibidores de Poli(ADP-Ribose) Polimerases , Camundongos , Humanos , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Modelos Animais de Doenças , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão , Mediadores da Inflamação/farmacologia , Necrose
10.
Biomolecules ; 12(6)2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35740913

RESUMO

Prior studies demonstrate the activation of poly-(ADP-ribose) polymerase 1 (PARP1) in various pathophysiological conditions, including sepsis. We have assessed the effect of olaparib, a clinically used PARP1 inhibitor, on the responses of human peripheral blood leukocytes (PBMCs) obtained from healthy volunteers in response to challenging with live bacteria, bacterial lipopolysaccharide (LPS), or oxidative stress (hydrogen peroxide, H2O2). The viability of PBMCs exposed to olaparib or to the earlier generation PARP inhibitor PJ-34 (0.1-1000 µM) was monitored using Annexin V and 7-aminoactinomycin D. To evaluate the effects of olaparib on the expression of PARP1 and its effects on protein PARylation, PBMCs were stimulated with Staphylococcus aureus with or without olaparib (1-10 µM). Changes in cellular levels of nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP), as well as changes in mitochondrial membrane potential (MMP), were measured in PBMCs exposed to H2O2. Bacterial killing was evaluated in PBMCs and polymorphonuclear leukocytes (PMNs) incubated with S. aureus. Cytokine production was measured in supernatants using a cytometric bead array. Reactive oxygen species (ROS), nitric oxide (NO) production, and phagocytic activity of monocytes and neutrophils were measured in whole blood. For ROS and NO production, samples were incubated with heat-killed S. aureus; phagocytic activity was assessed using killed Escherichia coli conjugated to FITC. Olaparib (0.1-100 µM) did not adversely affect lymphocyte viability. Olaparib also did not interfere with PARP1 expression but inhibits S. aureus-induced protein PARylation. In cells challenged with H2O2, olaparib prevented NAD+ and ATP depletion and attenuated mitochondrial membrane depolarization. LPS-induced production of TNF-α, MIP-1α, and IL-10 by PBMCs was also reduced by olaparib. Monocytes and neutrophils displayed significant increases in the production of ROS and NO after stimulation with S. aureus and phagocytic (E. coli) and microbicidal activity, and these responses were not suppressed by olaparib. We conclude that, at clinically relevant concentrations, olaparib exerts cytoprotective effects and modulates inflammatory cytokine production without exerting adverse effects on the cells' ability to phagocytose or eradicate pathogens. The current data support the concept of repurposing olaparib as a potential experimental therapy for septic shock.


Assuntos
Lipopolissacarídeos , Inibidores de Poli(ADP-Ribose) Polimerases , Trifosfato de Adenosina/metabolismo , Escherichia coli/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , NAD/metabolismo , Estresse Oxidativo , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Clin Exp Immunol ; 207(3): 370-377, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35553637

RESUMO

Pseudomonas aeruginosa is a common respiratory pathogen that causes injurious airway inflammation during acute pneumonia. Peroxisome proliferator-activated receptor (PPAR)-γ is involved in the regulation of metabolic and inflammatory responses in different cell types and synthetic agonists of PPAR-γ exert anti-inflammatory effects on myeloid cells in vitro and in models of inflammation in vivo. We sought to determine the effect of the PPAR-γ agonist pioglitazone on airway inflammation induced by acute P. aeruginosa pneumonia, focusing on bronchial epithelial cells. Mice pretreated with pioglitazone or vehicle (24 and 1 h) were infected with P. aeruginosa via the airways. Pioglitazone treatment was associated with increased expression of chemokine (Cxcl1, Cxcl2, and Ccl20) and cytokine genes (Tnfa, Il6, and Cfs3) in bronchial brushes obtained 6 h after infection. This pro-inflammatory effect was accompanied by increased expression of Hk2 and Pfkfb3 genes encoding rate-limiting enzymes of glycolysis; concurrently, the expression of Sdha, important for maintaining metabolite flux in the tricarboxylic acid cycle, was reduced in bronchial epithelial cells of pioglitazone treated-mice. Pioglitazone inhibited bronchoalveolar inflammatory responses measured in lavage fluid. These results suggest that pioglitazone exerts a selective proinflammatory effect on bronchial epithelial cells during acute P. aeruginosa pneumonia, possibly by enhancing intracellular glycolysis.


Assuntos
Pneumonia , Tiazolidinedionas , Animais , Células Epiteliais/metabolismo , Hipoglicemiantes , Inflamação , Camundongos , PPAR gama/agonistas , PPAR gama/genética , Pioglitazona/farmacologia , Pseudomonas aeruginosa , Tiazolidinedionas/farmacologia
14.
AIDS Res Ther ; 19(1): 2, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022035

RESUMO

BACKGROUND: We developed a personalized Monocyte-Derived Dendritic-cell Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses. METHODS: PBMCs were obtained from 10 HIV+ individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF. After sequencing each patient's HIV-1 Gag and determining HLA profiles, autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients' cells were stimulated in vitro with autologous peptides, and intracellular IL-2, TNF, and interferon-gamma (IFN-γ) production were measured in CD4+ and CD8+ T-cells. RESULTS: The protocol of ex-vivo treatment with IFN-α and GM-CSF was able to induce maturation of MDDCs, as well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of IL-2 in CD4+ and CD8+ T-cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF and IFN-γ expression was significantly increased in CD4+ T-cells. The number of candidates that increased in vitro the cytokine levels in CD4+ and CD8+ T cells upon stimulation with Gag peptides from baseline to day 15 and from baseline to day 30 and day 120 after MDDCT was significant as compared to Gag unstimulated response. This was accompanied by an increasing trend in the frequency of polyfunctional T-cells over time, which was visible when considering both cells expressing two and three out of the three cytokines examined. CONCLUSIONS: MDDC had a mature profile, and this MDDCT promoted in-vitro T-cell immune responses in HIV-infected patients undergoing long-term suppressive antiretroviral treatment. Trial registration NCT02961829: (Multi Interventional Study Exploring HIV-1 Residual Replication: a Step Towards HIV-1 Eradication and Sterilizing Cure, https://www.clinicaltrials.gov/ct2/show/NCT02961829 , posted November 11th, 2016).


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Terapia Baseada em Transplante de Células e Tecidos , Células Dendríticas , Infecções por HIV/tratamento farmacológico , Humanos
15.
PLoS One ; 16(11): e0258987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793468

RESUMO

Several studies of patients with COVID-19 have evaluated biological markers for predicting outcomes, most of them retrospectively and with a wide scope of clinical severity. We followed a prospective cohort of patients admitted in hospital wards with moderate COVID-19 disease, including those with a history of kidney transplantation, and examined the ability of changes in routine hematologic laboratory parameters to predict and mirror the patients' clinical course regarding the severity of their condition (classified as critical vs. non-critical) and in-hospital mortality or hospital discharge. Among the 68 patients, 20 (29%) were kidney transplanted patients (KT), and they had much higher mortality than non-kidney transplanted patients in this cohort (40% X 8.3%). Lymphocytes, neutrophils and neutrophils/lymphocytes ratio (NLR) at admission and platelets as well as the red blood cells parameters hemoglobin, hematocrit, and RDW by the time of hospital discharge or death clearly differentiated patients progressing to critical disease and those with clinical recovery. Patients with deteriorating clinical courses presented elevated and similar NLRs during the first week of hospitalization. However, they were dramatically different at hospital discharge, with a decrease in the survivors (NLR around 5.5) and sustained elevation in non-survivors (NLR around 21). Platelets also could distinguish survivors from non-survivors among the critical patients. In conclusion, routine hematologic tests are useful to monitor the clinical course of COVID-19 patients admitted with moderate disease. Unexpectedly, changes in hematologic tests, including lymphopenia, were not predictive of complicated outcomes among KT recipients.


Assuntos
Biomarcadores/sangue , Células Sanguíneas/patologia , COVID-19/mortalidade , Transplante de Rim/efeitos adversos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
16.
Front Immunol ; 12: 744799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594344

RESUMO

Sepsis is a global health emergency, which is caused by various sources of infection that lead to changes in gene expression, protein-coding, and metabolism. Advancements in "omics" technologies have provided valuable tools to unravel the mechanisms involved in the pathogenesis of this disease. In this study, we performed shotgun mass spectrometry in peripheral blood mononuclear cells (PBMC) from septic patients (N=24) and healthy controls (N=9) and combined these results with two public microarray leukocytes datasets. Through combination of transcriptome and proteome profiling, we identified 170 co-differentially expressed genes/proteins. Among these, 122 genes/proteins displayed the same expression trend. Ingenuity Pathway Analysis revealed pathways related to lymphocyte functions with decreased status, and defense processes that were predicted to be strongly increased. Protein-protein interaction network analyses revealed two densely connected regions, which mainly included down-regulated genes/proteins that were related to the transcription of RNA, translation of proteins, and mitochondrial translation. Additionally, we identified one module comprising of up-regulated genes/proteins, which were mainly related to low-density neutrophils (LDNs). LDNs were reported in sepsis and in COVID-19. Changes in gene expression level were validated using quantitative real-time PCR in PBMCs from patients with sepsis. To further support that the source of the upregulated module of genes/proteins found in our results were derived from LDNs, we identified an increase of this population by flow cytometry in PBMC samples obtained from the same cohort of septic patients included in the proteomic analysis. This study provides new insights into a reprioritization of biological functions in response to sepsis that involved a transcriptional and translational shutdown of genes/proteins, with exception of a set of genes/proteins related to LDNs and host-defense system.


Assuntos
Leucócitos Mononucleares/metabolismo , Neutrófilos/metabolismo , Sepse/metabolismo , Bases de Dados Factuais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/metabolismo , Neutrófilos/citologia , Mapas de Interação de Proteínas , Proteômica , Sepse/genética , Sepse/imunologia
17.
Shock ; 56(3): 325-328, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34398125
18.
Front Med (Lausanne) ; 8: 685333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322502

RESUMO

Sepsis is characterized by an initial hyperinflammatory response, with intense cell activation and cytokine storm. In parallel, a prolonged compensatory anti-inflammatory response, known as immunological tolerance, can lead to immunosuppression. Clinically, this condition is associated with multiple organ failure, resulting in the patient's death. The mechanisms underlying the pathophysiology of sepsis are not yet fully understood, but evidence is strong showing that epigenetic changes, including DNA methylation and post-translational modifications of histones, modulate the inflammatory response of sepsis. During the onset of infection, host cells undergo epigenetic changes that favor pathogen survival. Besides, epigenetic changes in essential genes also orchestrate the patient's inflammatory response. In this review, we gathered studies on sepsis and epigenetics to show the central role of epigenetic mechanisms in various aspects of the pathogenesis of sepsis and the potential of epigenetic interventions for its treatment.

19.
Shock ; 56(1): 80-91, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196628

RESUMO

ABSTRACT: Hypoxia inducible factor 1 alpha (HIF-1α) is linked to the metabolic and immune alterations in septic patients. Stabilization of HIF-1α by hypoxia or inflammation promotes the expression of several genes related to glycolytic metabolism, angiogenesis, coagulation, cell proliferation, and apoptosis. Here, we analyzed public available blood transcriptome datasets from septic patients and evaluated by PCR array the expression of HIF-1α and other hypoxia responsive genes in peripheral blood mononuclear cells from patients with sepsis secondary to community acquired infections. Samples were collected at intensive care unit admission (D0, n=29) and after 7 days follow-up (D7, n = 18); healthy volunteers (n = 10) were included as controls. Hypoxia and glycolysis were among the top scored molecular signatures in the transcriptome datasets. PCR array showed that 24 out of 78 analyzed genes were modulated in septic patients compared with healthy volunteers; most of them (23/24) were downregulated at admission. This same pattern was observed in surviving patients, while non-survivors presented more upregulated genes. EGLN1, EGLN2, and HIF1AN, inhibitors of HIF-1α activation were downregulated in patients, regardless of the outcome, while HIF-1α and other target genes, such as PDK1 and HMOX1, expression were higher in non-survivors than in survivors, mainly at D7. Non-survivor patients also presented a higher SOFA score and lower PaO2/FiO2 ratio. Our results indicate a differential modulation of hypoxia pathway in leukocytes between septic patients who survived and those who did not survive with an increased intensity at D7, which is possibly influenced by disease severity and may affect the immune response in sepsis.


Assuntos
Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia/genética , Leucócitos Mononucleares/fisiologia , Sepse/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Shock ; 56(6): 901-909, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34115723

RESUMO

ABSTRACT: Sepsis' pathogenesis involves multiple mechanisms that lead to a dysregulation of the host's response. Significant efforts have been made in search of interventions that can reverse this situation and increase patient survival. Poly (ADP-polymerase) (PARP) is a constitutive nuclear and mitochondrial enzyme, which functions as a co-activator and co-repressor of gene transcription, thus regulating the production of inflammatory mediators. Several studies have already demonstrated an overactivation of PARP1 in various human pathophysiological conditions and that its inhibition has benefits in regulating intracellular processes. The PARP inhibitor olaparib, originally developed for cancer therapy, paved the way for the expansion of its clinical use for nononcological indications. In this review we discuss sepsis as one of the possible indications for the use of olaparib and other clinically approved PARP inhibitors as modulators of the inflammatory response and cellular dysfunction. The benefit of olaparib and other clinically approved PARP inhibitors has already been demonstrated in several experimental models of human diseases, such as neurodegeneration and neuroinflammation, acute hepatitis, skeletal muscle disorders, aging and acute ischemic stroke, protecting, for example, from the deterioration of the blood-brain barrier, restoring the cellular levels of NAD+, improving mitochondrial function and biogenesis and, among other effects, reducing oxidative stress and pro-inflammatory mediators, such as TNF-α, IL1-ß, IL-6, and VCAM1. These data demonstrated that repositioning of clinically approved PARP inhibitors may be effective in protecting against hemodynamic dysfunction, metabolic dysfunction, and multiple organ failure in patients with sepsis. Age and gender affect the response to PARP inhibitors, the mechanisms underlying the lack of many protective effects in females and aged animals should be further investigated and be cautiously considered in designing clinical trials.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Sepse/tratamento farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...